

KAISAI HEAT PUMPS

SELECTION OF AIR-TO-WATER HEAT PUMPS

- Air pumps do not provide 100% of the heating power demand at the design temperature
- A drop in air temperature causes a drop in the heating power of the pump.
- Extremely low temperatures can cause a complete shutdown.
- The need to use a second heat source.
- The need to determine the point of bivalence.

Bivalence point - the limit temperature to which the heat pump is able to fully cover the heating power requirement of the building without the use of an additional energy source. Below the bivalence point, an additional "peak" heat source is triggered.

SELECTION OF AIR-TO-WATER HEAT PUMPS

- principle of operation - bivalent point

Determines the external temperature to which the heat pump provides heating power without any additional support.

Outdoor design temperature	bivalent point
- 16 °C	od - 4 °C do - 7 °C
- 18 °C	od - 5 °C do - 8 °C
- 20 °C	od - 6 °C do - 9 °C
- 22 °C	od - 7 °C do - 10 °C
- 24 °C	od - 8 °C do - 11 °C

The air heat pump is selected so that it covers 100% of the heat demand at the bivalent point. Below the bivalent point, the pump is supported by another heat source, e.g. an electric heater.

Outdoor temperature graph - Warsaw 2014

Case 1. - Too low power of the heat pump.

The consequences of selecting a heat pump with too little power

- meeting the energy demand only at high outside air temperatures.
- increased electricity consumption by heaters.
- high operating costs.
- no domestic hot water comfort

Consequences of selecting a heat pump that is too powerful.

- High investment costs
- Compressor energy consumption increased
- Risk of HP failure in DHW mode
 - Necessity to oversize the domestic hot water tank
 - Underheating of domestic hot water no comfort of use.
- Risk of HP error. in central heating mode
 - The need to ensure an adequate flow / volume of water in the central heating system
 - A high probability of the need for a central heating buffer

QUESTIONS REGARDING THE SELECTION OF HEAT PUMPS

- 1. Is the heating power demand of the building calculated (in "kilowatts" [kW] or [kWh/m2/year] useful energy calculated now)?
- 2. What is the heated area of the building in m2 (if there is a garage, should it be heated?)?
- 3. What is the insulation of the building (thickness of the insulation on the walls, double/triple glazing windows, roof insulation, insulation of ground, is the garage insulated from the building, etc ...)?
- 4. When was the building constructed?
- 5. Address (for determining the climatic zone)
- 6. What is the heating system (radiators, underfloor heating, mixed)?
- 7. Number of permanent residents using domestic hot water?
- 8. Are there already or are there planned large domestic hot water consumers? (large bathtub 300-400l, rain shower 40-60l/min, etc. ...)
- 9. Is the heat pump supposed to work with another heat source (a solid fuel boiler, a fireplace with a water jacket, solar collectors)?
- 10. In case of changing the heat source, e.g. from an oil or gas boiler: How much fuel did you use on average in liters, m3, tons...?
- 11. In the case of a radiator system: what was the maximum temperature of the heating system set in severe frosts (e.g. at -18'C, -20'C)?

Method 1: W/m2 demand ratio method.

Method 2: Demand ratio method kWh/year.

Method 3: Known fuel consumption method.

W/m2 demand ratio method

- Passive houses: 15 W / m²
- Energy-efficient houses (new construction): 40 W / m² (with recuperation)
- New construction with good thermal insulation: 50 W / m²
- Old building with modern thermal insulation: 75 W / m²
- We multiply the usable floor area of the building by the factor from the table above:

EXAMPLE : q = 40 W/m² A = 150m² Q = 150 x 40 = 6 000W

Domestic hot water

Additionally, the power needed to prepare domestic hot water should be added.

When calculating the additional heat output of the DHW heat pump should be taken from 0.20-0.25 kW per person.

Additional hot water consumers should also be taken into account, such as:

- whirlpool tubs
- jacuzzi
- swimming pools
- shower cabins with hydro massages

EXAMPLE :

4 persons x 0,25kW = 1kW

Therefore, we add an additional amount to the calculated power of the heat pump 1kW.

The device should be selected in accordance with the total power requirement

 $\mathbf{Q}_{\mathsf{HP}} = \mathbf{Q}_{\mathsf{CH}} + \mathbf{Q}_{\mathsf{DHW}} + \mathbf{Q}_{\mathsf{s}}$

 Q_{HP} = heat pump heating capacity

 Q_{CH} = heat demand for heating purposes

Q_{DHW} = heat demand for domestic hot water purposes

Q_s = heat demand for special purposes

EXAMPLE :

Demand for C.H. $q = 40 W/m^2$

DHW demand

TOTAL power of the heat pump

 $A=150m^2 Q = 150 \times 40 = 6000W$

4per. x 250W = 1 000W

7 000 W

Method 2: Method with the calculated energy demand factor.

Knowing the calculated energy demand indicator, we can determine the heating power of the device. The demand factor is determined, for example, in the building's energy certificate. **EXAMPLE:**

 $E_{DR} = 80 \text{ kWh/m}^2/\text{year} \qquad A=150\text{m}^2$ $Q = 150 \times 80 = 12 \ 000 \text{ kWh/year}$ $Q_{DHW} = 4 \times 1000 \text{kWh} = 4000 \text{kWh}$ $Q_{HP} = 12 \ 000 + 4 \ 000 = 16 \ 000 \text{kWh}$ We assume that the indicator is an ON / OFF heat pump operating 2000h / year so the power of the heat pump: $Q = 16 \ 000 \ / \ 2 \ 000h = 8 \text{kW}$

Method 3: Method with the fuel consumption known to date

Knowing the current fuel consumption, we can determine the heating power of the device.

Natural gas:9.5kWh / m3Heating oil:10kWh / lLPG:6.85kWh / lCoal7000 kWh / t

The efficiency of the combustion system should be taken into account and the indicator is an ON / OFF heat pump operating 2000h / year:

EXAMPLE:

V = 2 000 l/year - annual oil consumption, efficiency 80%

Q = 2 000 * 10 * 0,8/2000 = 8 kW

TOP SOURCES OF HEAT PUMPS.

The heat receivers from the heat pump are considered the upper source :

- Surface heating (floor, wall, ceiling)
- Radiator heating (radiators)
- Water heaters
- Fan coil units
- Duct heaters

Main assumptions for the selection of heat pumps:

- Calculated heating power demand :
- maximum water temperature :
- heating system capacity
- The area of the DHW tank coil

???!!!

???!!!

20I/1kW min. heating power or 5I/kW nom. power

0,25m2/1kW nominal heating power

 $T_{out} = 35 \circ C$

 $T_{out} = 45 \degree C$

 $T_{out} = 40 \circ C$

T_{out} = 50 ° C !!!

T_{out} = 35-40 °C

eco home

KAISAÍ

Q 13382

A

KAISAÍ

KHC-22/30RX3

- Power range: 22, 30kW
- Supply temperature up to 60'C
- Supply temperature up to 60'C at -10'C external temperature
- Supply temperature up to 50'C at -15'C
- Cascade connections of up to 6 units (16 units via MODBUS)
- Support for 2 heating circuits
- Circulation pump, safety valve, vent valve, diaphragm vessel, flow sensor, controller, DF standard
- No build in auxiliary electric heater

KHA ARCTIC

- A wide range of power: 6, 8, 10, 12, 14, 16kW !!!
- Supply temperature up to 65'C
- Supply temperature up to 60'C, even at -15'C external temperature
- Supply temperature up to 57'C at -20'C !!!
- New, quiet design (sound pressure from 46dB (A)
- Built-in controller in the indoor unit
- Cascade connections of up to 6 units
- Support for 2 heating circuits
- Circulation pump, safety valve, vent valve, diaphragm vessel, flow sensor, controller, DHW tank sensor as standard
- 3kW flow heater 6kW, 9kW model 8-16kW models

KHC ARCTIC

- A wide range of power: 6, 8, 10, 12, 14, 16kW !!!
- Supply temperature up to 65'C
- Supply temperature up to 60'C, even at -15'C external temperature
- Supply temperature up to 57'C at -20'C !!!
- New, quiet design (sound pressure from 45dB (A)
- Cascade connections of up to 6 units
- Support for 2 heating circuits
- Circulation pump, safety valve, vent valve, diaphragm vessel, flow sensor, controller, DHW tank sensor as standard
- 3kW flow heater 6kW, 9kW model 8-16kW models

KMK-190/240L ARCTIC

Model				KMK-190L-100RY1 KMK-240L-100RY3		DL-100RY3	KMK-240L-160RY3	
Names of the compatible outdoor unit models				KHA-06RY1	KHA-08RY1 KHA-10RY1	KHA-06RY1	KHA-08RY1 KHA-10RY1	KHA-12RY3 KHA-14RY3 KHA-16RY3
Heat Exchanger				plate	plate	plate	plate	plate
	type			DC Inverter	DC Inverter	DC Inverter	DC Inverter	DC Inverter
water pump	head		m H ₂ O	9	9	9	9	9
expansion vessel		volume	I	8	8	8	8	8
Water consumption profile acc. to EN16147				L	L	XL	XL	XL
		temperate climate	class	A+	A+	A+	A+	A+
			COP	3.10	3.02	3.34	3.36	3.00
Domestic List Water #1	Energy efficiency class for DHW heating	warm climate	class	A+	A+	A+	A+	A+
Domestic Hot water 1			COP	3.80	3.66	4.24	4.18	3.73
		cold climate	class	А	А	А	А	А
			COP	2.50	2.61	2.63	2.72	2.24
	type			Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
	material			SUS 316L	SUS 316L	SUS 316L	SUS 316L	SUS 316L
DHW tank	water capacity		L	190	190	240	240	240
	maximum water temperature		°C	70	70	70	70	70
	insulation (material)				Po	olyurethane (Cyclopenta	ine)	
Electric power supply	voltage / number of phases / frequency		V/Ph/Hz	220÷240/1/50	220÷240/1/50	380÷415/3/50	380÷415/3/50	380÷415/3/50
	maximum working current (MCA)		А	14.3	14.3	14.3	14.3	14.3
	electric power		kW	3	3	3/6/9	3/6/9	3/6/9
Auxiliary electric heater	capacity levels			1	1	3	3	3
	power supply		V/Ph/Hz	220÷240/1/50	220÷240/1/50	380÷415/3/50	380÷415/3/50	380÷415/3/50

KAISAÍ

KAISAÍ

APPLICATION

KHC (22, 30)

APPLICATION - CASCADE UP TO 6 UNITS

R32

APPLICATION - CASCADE UP TO 16 UNITS

KAISAÍ

KHA+KMK, KHC

APPLICATION (OTHER HEAT SOURCE)

APPLICATION (DHW)

Coil min. 0.25 m2 / kW heating power of the heat pump

THE POSITION OF THE OUTDOOR UNIT

THE POSITION OF THE OUTDOOR UNIT

THE POSITION OF THE OUTDOOR UNIT

Odpływ w pomieszczeniu

Installation of devices

KAISAÍ

KHA freon installation ...

ODU

Models	6~16 kW
Max.piping length (H+L1)	30m
Max difference in height (H)	20m

MODEL	Refrigerant	Gas side/Liquid side
6kW	R32	Ф15.9/Ф6.35
8/10kW	R32	Ф15.9/Ф9.52
3-phase 12/14/16kW	R32	Ф15.9/Ф9.52

IDU

Refrigerant to be added	Madal	Total liquid pipe len	gth L(m)
Reingerant to be added	Model	≤15m	>15m
Total additional refrigerant	6kW	Og	(L-15)×20g
Total additional remgerant	8/10/12/14/16kW	Og	(L-15)×38g

KHA freon installation ...

Installation of devices

KAISAÍ

KHA freon installation ...

ODU \square Н L1

IDU

Pipe diameter	Thickness
Φ6.35~15.9mm	≥15mm
Ф15.9~38.1mm	≥20mm

Installation errors.

Installation errors

Installation errors

Installation errors

KAISAÍ

eco home pompy ciepła

WIRED CONTROLLER

- Multilingual menu
- Newly designed controller
- Operation via WiFi wireless network
- Modbus RTU protocol possibility to connect up to 16 devices and integration with BMS
- Supports cascade connection of up to 6 units
- Simple and quick change of heat pump operating parameters
- Checking the operating parameters in real time
- Communication cable length adjustable up to 50 m
- Built-in temperature sensor
- Possibility to update software via USB and save heat pump settings to a memory stick
- Wi-Fi module

KAISA

CONTROL

eco home

pompy ciepła

CONTROL - DHW

Domestic hot water (DHW): 1) DISINFECTION 2) QUICK DHW 3) TANK HEATER 4) DHW PUMP

DOMESTIC HOT WATER (DHW)				
DIS- INFECT	FAST DHW	TANK HEATER	DHW PUMP	
CURRENT STATE ON			ON	
OPERATE	OPERATE DAY FRI			
START	START 23:00			
ON/OFF ON/OFF			€₽	

DOMESTIC HOT WATER (DHW)				
DIS- INFECT	FAST DHW	TANK HEATER	DHW PUMP	
CURRENT STATE ON				
ON/OFF ON/OFF				

DOMESTIC HOT WATER (DHW)				
DIS- INFECT	FAST DHW	TANK HEATER	DHW PUMP	
CURRENT STATE ON				
ON/OFF ON/OFF				

DOMESTIC HOT WATER (DHW) 1/2				
DIS- INFECT	FAST DHW	TANK HEATER	DHW PUMP	
NO.	START	NO.	START	
T1 🗆	00:00	T4 🗌	00:00	
T2 🗆	00:00	T5 🗌	00:00	
T3 🗆	00:00	т6 🗆	00:00	

KAISA

KHA+KMK, KHC (ARCTIC)

CONTROL - OTHER

OPERATION PARAMETER	#00
ONLINE UNITS NUMBER	1
OPERATE MODE	COOL
SV1 STATE	ON
SV2 STATE	OFF
SV3 STATE	OFF
PUMP_I	ON
▲ ADDRESS	1/9 🖨
OPERATION PARAMETER	#00
T5 WATER TANK TEMP.	53°C
Tw2 CIRCUIT2 WATER TEMP.	35°C
TIS' C1 CLI. CURVE TEMP. 35	°C
TIS2' C2 CLI. CURVE TEMP. 35	5°C
TW_O PLATE W-OUTLET TEM	P. 35°C
TW_I PLATE W-INLET TEMP.	30°C
ADDRESS	4/9 🖨
OPERATION PARAMETER	#00
FAN SPEED 60	0R/MIN
IDU TARGET FREQUENCY	46Hz
FREQUENCY LIMITED TYPE	5
SUPPLY VOLTAGE	230V
DC GENERATRIX VOLTAGE	420V
DC GENERATRIX CURRENT	18A

ADDRESS

7/9 🖨

OPERATION PARAMETER	#00	OPER/
PUMP-O	OFF	GAS B
PUMP-C	OFF	T1 LEA
PUMP-S	OFF	WATE
PUMP-D	OFF	HEAT
PIPE BACKUP HEATER	OFF	POWE
TANK BACKUP HEATER	ON	Ta RO
▲ ADDRESS	2/9 🖨	
OPERATION PARAMETER	#00	OPER
Tbt1 BUFFERTANK_UP TEMP.	35°C	
Tbt2 BUFFERTANK_LOW TEM	P. 35°C	COMP
Tsolar	25°C	COMP
IDU SOFTWARE 01-09-	2019V01	COMP
		COMP
		EXPA
ADDRESS	5/9 🖨	ADI
OPERATION PARAMETER	#00	OPER
TW_O PLATE W-OUTLET TEMP	P. 35°C	T3 OU
TW_I PLATE W-INLET TEMP.	30°C	T4 OU
T2 PLATE F-OUT TEMP.	35°C	TF MC
T2B PLATE F-IN TEMP.	35°C	P1 CO
Th COMP. SUCTION TEMP.	5°C	ODU S
Tp COMP. DISCHARGE TEMP.	75°C	HMI S
▲ ADDRESS	8/9 🖨	ADI

OPERATION PARAMETER	#00
GAS BOILER	OFF
T1 LEAVING WATER TEMP.	35°C
WATER FLOW	1.72m3/h
HEAT PUMP CAPACTIY	11.52kW
POWER CONSUM.	1000kWh
Ta ROOM TEMP	25°C
▲ ADDRESS	3/9 🖨
· · · · · · · · · · · · · · · · · · ·	

OPERATION PARAMETER	#00
ODU MODEL	6kW
COMP.CURRENT	12A
COMP.FREQENCY	24Hz
COMP.RUN TIME	54 MIN
COMP.TOTAL RUN TIME	1000Hrs
EXPANSION VALVE	200P
▲ ADDRESS	6/9 🖨

OPERATION PARAMET	ER #00
T3 OUTDOOR EXCHAR	GE TEMP. 5°C
T4 OUTDOOR AIR TEM	IP. 5°C
TF MODULE TEMP.	55°C
P1 COMP. PRESSURE	2300kPa
ODU SOFTWARE	01-09-2018V01
HMI SOFTWARE	01-09-2018V01
ADDRESS	9/9 🖨

KAISAÍ

BEFORE STARTING THE HEAT PUMP !!!

Please remove the hollow plate after installation.

1 zone: c.o. + DHW

2 zone: with

mixing group

Order	Port	Code	Assembly unit		Port	Code	Assembly unit			
1	CN21	POWER	Port for power supply	10	CNRG	M1 M2	Port for remote switch			
2	S3	1	Rotary dip switch	15	CN30	T1 T2	Port for thermostat transfer board			
3	DIS1	1	Digital display	20	CN19	PQ	Communicate port between indoor unit and			
4	CN5	GND	Port for ground		CN14	ABXYE	Port for communication with the wired controller			
5	CN28	PUMP	Port for variable speed pump power input			12345	Port for communication with the wired controller			
6	CN25	DEBUG	Port for IC programming			12040	Communicate port between indoor unit and			
7	\$1,\$2,\$4,\$W9	1	Dip switch	22	CN30	67	outdoor unit			
8	CN4	USB	Port for USB programming			9 10	Port for Internal machine Parallel			
9	CN8	FS	Port for flow switch			26 30/31 32	Compressor run/Defrost run			
			Port for temperature sensor of refrigerant liquid	23	CN7	25 29	Port for antifreeze E-heating tape(external)			
		T2	side temperature of indoor unit (heating mode)			27 28	Port for additional heat source			
					T2B	Port for temperature sensor of refrigerant gas			12	Input port for solar energy
			Port for temperature of indoor unit (cooling mode)			3 4 15	Port for room thermostat			
10	CN6	6 TW_in	temperature of plate heat exchanger			5616	Port for SV1(3-way valve)			
		TW out	Port for temperature sensor of outlet water			7017	Port for SV2(3-way valve)			
		TW_OUL	temperature of plate heat exchanger			921	Port for 20the 2 pump			
		T1	water temperature of indoor unit	24	CN11	11 23	Port for solar energy pump			
11	CN24	Tht1	Port for upper temp, sensor of balance tank			12 24	Port for DHW pipe pump			
	01124	TDU	i or for upper temp. Sensor of bulance tank			13 16	Control port for tank booster heater			
						14 17	Control port for internal backup heater 1			
13	CN13	T5	Port for domestic hot water tank temp sensor	h		18 19 20	Port for SV3(3-way valve)			
14	CN15	Tw2	Port for zone 2 temp.sensor of outlet water	25	CN2	TBH_FB	Feedback port for external temperature switch(shorted in default)			
15	CN18	Tsolar	Port for solar panel temp. sensor			101110	Feedback port for temperature switch			
16	CN17	PUMP_BP	Port for variable speed pump communication	26	CN1	IBH1/2_FB	(shorted in default)			
		HT	Control port for room thermostat (heating mode)			IBH1	Control port for internal backup heater 1			
17	CN31	N31 COM Power port for room thermostat	27	CN22	IBH2	Reserved				
		CL	Control port for room thermostat (cooling mode)		0.144	IBH	Dent for anti fragme electric heating top (internel)			
		SG	Port for smart grid (grid signal)	28	CN41	HEAT8	Port for anti-freeze electric nearing tape(internal)			
		00		29	CN40	HEA17	Port for anti-freeze electric heating tape(internal)			
18	CN35			30	CN42	HEAT6	Port for anti-freeze electric heating tape(internal)			
18		EVU	Port for smart grid (photovoltaic signal)	31	CN29	HEAT5	Port for anti-freeze electric heating tape(internal)			
							32	CN32	IBH0	Port for backup heater

KAISAÍ

*- in case of using an actuator with constant control voltage on one wire, it should be connected to terminal no.15 (L1) on CN11

	Code	Print		Connect to		
	(I)	1	SL1	Solar energy input		
	1	2	SL2	signal		
		3	Н	Room thermostat input		
	2	4	С	(high voltage)		
		15	L1			
		5	10N			
	3	6	10FF	SV1(3-way valve)		
		16	Ν			
		7	20N			
1	4	8	20FF	SV2(3-way valve)		
		17	Ν			
	5	9	P_c	Pumpc(zone2 pump)		
		21	Ν	r umpe(zonez pump)		
	ß	10	P_o	Outside circulation pump	٦	
		22	Ν	/zone1 pump		
	$\overline{\mathcal{T}}$	11	P_s	Solar energy nump		
)	23	Ν	Solar energy pump		
	8	12	P_d	DHW pipe pump		
		24	N	Britt pipe pump		
	0	13	TBH	Tank booster heater		
)	16	N	Tank booster neater		
	(14	IBH1			
	(10)	17	N	Internal backup heater 1		
		10	N		٦	
			01/0/0			
	ω	 19 3ON SV3(3-way valv 20 3OFF 	19	3ON	SV3(3-way valve)	

Code		F	Print	Connect to	
	0 2 3	26	R2		
		30	R1	Compressor run	
		31	DFT2	Defrect or alarm signs	
CN7		32	DFT1	Demost of alarm signal	
		25	HT	Antifreeze E-heating	
		29	N	tape(external)	
		27	AHS1	Additional heat source	
		28	AHS2	, additional field bouroe	

c.o. / DHW*

2 zone

*- in case of using an actuator with constant control voltage on one wire, it should be connected to terminal no.15 (L1) on CN11

3-WAY VALVE (230V FIXED LINE ACTUATOR)

3-way valve (230V fixed line actuator)

KAISAÍ

HYDRAULIC CONNECTIONS KMK/KHC

3-WAY VALVE

KAISAÍ

A CONTACTOR IS REQUIRED TO CONNECT THE CIRCULATION PUMPS

Connection of the DHW temperature sensor (T5) and the temperature sensor of the second heating circuit.

CN24	Tbt1	Port for upper temp. sensor of balance tank
CN13	T5	Port for domestic hot water tank temp. sensor
CN15	Tw2	Port for zone 2 temp.sensor of outlet water
CN18	Tsolar	Port for solar panel temp. sensor

Connection of the DHW temperature sensor (T5) and the temperature sensor of the second heating circuit.

CN24	Tbt1	Port for upper temp. sensor of balance tank
CN13	T5	Port for domestic hot water tank temp. sensor
CN15	Tw2	Port for zone 2 temp.sensor of outlet water
CN18	Tsolar	Port for solar panel temp. sensor

POPMPY KHX- R290

 \bigcirc

KAISAÍ

TECHNICAL DATA

Model			KHX-09PY1	KHX-14PY3	КНХ-16РҮЗ
	nominal heat capacity (range)	kW	8.90 (3.10 ~ 8.90)	14.95 (5.40 ~ 14.95)	22.00 (8.00 ~ 22.00)
Heating A7W35 ∆T=5, R.H. 85%	electric energy consumption (range)	kW	1.98 (0.68 ~ 2.10)	3.29 (1.05 ~ 3.85)	4.94 (1.60 ~ 6.90)
	COP	W/W	4.49 (4.76 ~ 4.23)	4.54 (5.09 ~ 4.53)	4.45 (4.99 ~ 4.44)
	nominal heat capacity (range)	kW	6.52	10.95	16.11
Heating A2W55 ∆T=5, R.H. 85%	electric energy consumption (range)	kW	2.19	3.65	5.48
	COP	W/W	2.97	3.00	2.94
	nominal heat capacity (range)	kW	7.18	12.06	17.75
Heating A-7W35 ∆T=5, R.H. 85%	electric energy consumption (range)	kW	1.87	3.11	4.65
	COP	W/W	3.84	3.88	3.82
	nominal heat capacity (range)	kW	1.20 ~ 5.72	3.60 ~ 10.50	4.20 ~ 15.00
Cooling A35W18 Z1=5	electric energy consumption (range)	kW	0.65 ~ 2.40	1.12 ~ 4.47	1.80 ~ 7.30
	seasonal energy efficiencya ηS avarage climate 35°C / 55°C	%	205/150	202/155	201/150
E-D	annual energy consumption avarage climate 35°C / 55°C	kWh	1970/2575	3750/4828	5076/6672
LIF	seasonal energy efficiencya ηS cold climate 35°C / 55°C	%	170/127	168/131	154/127
	annual energy consumption cold climate 35°C / 55°C	kWh	3110/4019	5913/7536	9530 / 10599
Seasonal space heating energy	TWW at 35°C class		A+++	A+++	A+++
efficiency class (avarage climate)	TWW at 55°C class		A+++	A+++	A+++

OUTDOOR INSTALLATION ON GROUND LEVEL

Rysunek 2: Strefa ochronna w przypadku zlokalizowania przy ścianie

INSTALACJA HYDRAULICZNA

6.1. Zastosowanie pompy ciepła

6.1.1. Ogrzewanie/chłodzenie domu + ciepłej wody użytkowej

KAISAÍ

HYDRAULIC INSTALLATION

KAISAÍ

KHX- R290

ELECTRICAL CONNECTION

ELECTRICAL CONNECTION

ELECTRICAL CONNECTION

CONTROL PANEL OPERATION

CONTROL PANEL OPERATION

Password: 22 or 022 855 → Factory reset

OPERATION OF THE ELECTRIC HEATER 1/2

• R35 - PARAMETER CORRESPONDING TO THE USE OF ELECTRIC HEATERS

- R35 = 0 ELECTRIC HEATERS WILL NOT BE USED.
- R35 = 1 FLOW HEATER.
- R35 = 2 HEATERS IN THE DHW TANK.
- R35 = 3 HEATERS IN BUFFER TANK.

KHX- R290

Service parameters

H18- BACKUP HEATERS	
1- Step 1	
2- Step 2	
3- Step 3	

Service parameters

R04 - Temperature drop which turns on heating
R05 - Temperature increase resulting in heating being turned off
R16 - Temperature drop causing DHW heating to turn on
R17 - Temperature increase that turns off DHW heating

E29	Secondary Anti-freezing Protection	Ambient temp.≤0°C, water inlet≤2°C	It is the protection in winter. Once the water temperature up to 15 °C or the ambient temp is higher than 1 °C, the error code disappears.
E032	Flow Switch Protection	Flow switch is open	 Detect the connection of cables. Detect the flow switch. Detect the water valve is opened or opened fully. Detect the water pump and the filter. Maybe there is some air in the water route.
E051	Compressor Over current Shutdown Fault	Compressor Over current	 Check ambient temp. and inlet/outlet water temp.; Turn on the unit. Record and analyze the changing process of high/low pressure, discharge/suction temp., EEV step, compressor frequency and running current.

